An Integrated White+Black Box Approach for Designing and Tuning Stochastic Local Search

نویسندگان

  • Steven Halim
  • Roland H. C. Yap
  • Hoong Chuin Lau
چکیده

Stochastic Local Search (SLS) is a simple and effective paradigm for attacking a variety of Combinatorial (Optimization) Problems (COP). However, it is often non-trivial to get good results from an SLS; the designer of an SLS needs to undertake a laborious and ad-hoc algorithm tuning and re-design process for a particular COP. There are two general approaches. Black-box approach treats the SLS as a black-box in tuning the SLS parameters. White-box approach takes advantage of humans to observe the SLS in the tuning and SLS re-design. In this paper, we develop an integrated white+black box approach with extensive use of visualization (white-box) and factorial design (black-box) for tuning, and more importantly, for designing arbitrary SLS algorithms. Our integrated approach combines the strengths of white-box and black-box approaches and produces better results than either alone. We demonstrate an effective tool using the integrated white+black box approach to design and tune variants of Robust Tabu Search (Ro-TS) for Quadratic Assignment Problem (QAP).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing and Tuning SLS Through Animation and Graphics: An Extended Walk-Through

Stochastic Local Search (SLS) is quite effective for a variety of Combinatorial (Optimization) Problems (COP). However, the performance of SLS depends on several factors and getting it right is not trivial. In practice, SLS may have to be carefully designed and tuned to give good results. Often this is done in an ad-hoc fashion. One approach to this issue is black-box where a tuning algorithm i...

متن کامل

Engineering Stochastic Local Search for the Low Autocorrelation Binary Sequence Problem

This paper engineers a new state-of-the-art Stochastic Local Search (SLS) for the Low Autocorrelation Binary Sequence (LABS) problem. The new SLS solver is obtained with white-box visualization to get insights on how an SLS can be effective for LABS; implementation improvements; and black-box parameter tuning.

متن کامل

An integrated approach for scheduling flexible job-shop using teaching–learning-based optimization method

In this paper, teaching–learning-based optimization (TLBO) is proposed to solve flexible job shop scheduling problem (FJSP) based on the integrated approach with an objective to minimize makespan. An FJSP is an extension of basic job-shop scheduling problem. There are two sub problems in FJSP. They are routing problem and sequencing problem. If both the sub problems are solved simultaneously, t...

متن کامل

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

An Adaptive Random Search Alogrithm for Optimizing Network Protocol Parameters

The optimization of network protocol parameters based on network simulation can be considered a “black-box” optimization problem with unknown, multi-modal and noisy objective functions. In this paper, an adaptive random search algorithm is proposed to perform efficient and robust optimization for the concerned problems. Specifically, the algorithm is designed for use by the on-line simulation s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007